Smart Extension Board

1st Sandhya Shinde

Department of Electronics and

Telecommunication

Dr. D. Y. Patil Institute of Engineering

Management and Research

Pune, India

sandhyamandhare16@gmail.com

2nd Omprakash Nahane
Department of Electronics and
Telecommunication
Dr. D. Y. Patil Institute of Engineering
Management and Research
Pune, India
omprakashnahane4333@gmail.com

Abstract

Smart Extension board is extension board device which is used to control many appliances and devices working on electricity remotely and saves a ton of energy this also enables one to monitor and analyze the devices and appliances efficiency on smartphones via Bluetooth application. Traditional extension boards are boards which only performs the on and off task to connect the supply voltage to the appliance or device, the smart extension board is more feature loaded then traditional extension boards. Smart Extension board can switch on and off the appliances or devices plugged to extension board without physically making a connect with board. This can be useful when you left devices turn on and when you are not home to control appliances or devices remotely. One can analyze and monitor the consumption of electricity by all appliances or devices connected to smart extension board. This helps in keeping track on energy consumption and utilization. Smart Extension board isolates the mains power supply from the appliances and devices to protect them from further damage in power fluctuation and natural calamities this is executed by integrating the optocoupler connected to the controller.

I. INTRODUCTION

Human lives and human societies are taking their steps towards the future with the intelligence and assistance of machines and smart devices, this has impacted many of the fields and areas of our lives. Now a days one out of two tasks

which humans perform are either with assistance of machine or fully automated, whether it is direct or indirect involvement of machines. This research paper presents an automated, machine-driven extension board which is intelligent and assists one in controlling their appliances and devices wirelessly and remotely with a Bluetooth app which pursuits following tasks.

1. <u>Isolation</u>:

There are many factors which affects the voltage in appliances and devices which results in fluctuations

and overloading in the electrical circuit causing damage and breakdown in circuitry to avoid these circumstances and maintain the follow of stable supply to the appliance and device the smart extension board is completely isolated from AC mains supply using Opto-coupler.

2. Stabilization:

Every electrical circuit works on a specific voltage and current rating, to lengthen their life it is necessary to provide the appliance or device proper voltage. The obstruction in this can be natural factors like lighting, thunder, fallen trees and heavy rain which then causes voltage fluctuation and voltage overloading damaging the circuitry of appliances and devices. Smart Extension board is designed with a stabilizer to prevent this fluctuations and overloading to make sure the circuit does not break, providing no disturbance in the

Journal of Engineering Design and Computational Science(JEDCS) appliance.

3. Universal Charging:

universal charging USB port diminishing the Adapter, android application connect to internet server.

4. Remote Access:

devices being IOT enabled, the smart extension board application. is also IOT loaded making it connected the internet to transmit and receive commands wirelessly and III. METHODOLOGY remotely. The extension board being wirelessly Begin by defining the requirements for the smart controlled can turn on and turn off appliances, devices extension board. Understand the market dynamics and

II. LITERATURE SURVEY

of Things) to expand benefits internet connectivity. It requirements form the foundation for the design determines smart home system for controlling process. With a clear understanding of appliances, devices and equipment's operating using requirements, delve into researching the components internet protocols. microcontroller-based hardware and blynk application board to life. Explore microcontrollers suitable for to control home equipment's wirelessly using wi-fi smart home applications, investigate wireless application.

- healthcare scenario has been gradually changing in the right microcontroller is crucial. It should have the terms of the use of advance healthcare and healthware processing power to handle the desired features and systems it discusses how IOT (Internet of Things) can functions. Implement a robust wireless connectivity play a vital role in improving the healthcare system. solution, ensuring seamless communication for The sensing layer consists of all sensors, RFIDs and remote control and interaction with other smart Wireless Sensor Network.
- using microcontroller ESP8266, temperature sensor, management is a key aspect of a smart extension humidity sensor and relay modules.
- Things(IIOT), NodeMCU microcontroller, and wifi energy-efficient components for power distribution, application blynk app used to control equipment's and and design mechanisms that prevent overloads and devices wirelessly and analayze the industrial short circuits, ensuring the safety of both the equipment's efficiency and tracking manufacture's extension board and the connected

environment remotely.

[4] This project about Smart Extension board for domestic uses, the equipment, devices tracking, Mobile and Smartphones have become an integrated measuring in real-time, automatically turn on or off, part of our lives to keep up with this integration one control this via internet of things (IOT) protects the should keep their mobiles and smartphones charged devices and equipment's from any damage. The project up, so the smart extension board is featured with manages Internet of Things using web pages and

[5] This paper incorporates voltage stabilizer which detects, corrects voltage fluctuation, overloading of Traditional Extension boards are turned on and electrical signal to create steady output for load turned off manually making physical contact to the connected to the supply voltage. The stabilizer circuit switch, the upgrading world and technologically can detect and buck and boost voltage signals to advancing future coming ahead needs a smarter and maintain the output at load clean and stable. This technologically advance devices with streams of includes an ESP8266 microcontroller and Wi-Fi

conserving the electricity and resulting reduced bills. the needs of potential users. This involves considering features such as remote control, energy monitoring, surge protection, USB charging, voice control, and The paper summarizes of concept aiming IOT (Internet compatibility with home automation systems. These This project is ESP8266 and technologies that will bring the smart extension communication protocols like Wi-Fi, Bluetooth, or Zigbee, and identify sensors that will enable [1] The research paper discusses the concept of functionalities such as power monitoring. Selecting devices. Pay special attention to security measures to [2] The paper discusses the home automation system protect user data during transmission. Efficient power board. Incorporate surge protection components to [3] This research paper discusses Industrial Internet of shield connected devices from power surges. Choose devices.

Journal of Engineering Design and Computational Science(JEDCS)

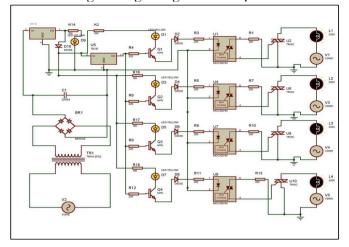


Fig. 1.0: Circuit Diagram

The block diagram below depicts a basic system for remotely controlling home appliances using a smartphone. Here's a breakdown of the components:

- Power Supply: This block represents the electrical source that provides power to the entire system. In most cases, this would be the standard household alternating current (AC) line voltage, typically 120V in North America and 230V in Europe and Asia.
- Android Smartphone: This is the user's device that runs a special application designed for controlling the home appliances. The smartphone communicates with the microcontroller wirelessly, likely via Wi-Fi.
- Microcontroller: This is a small, single-chip computer that acts as the brains of the system. It receives commands from the smartphone app and translates them into signals that can be understood by the appliances. The microcontroller also controls the relay module.
- **Relay Module**: This block consists of one or more relays, which are electrical switches that can be turned on or off by the microcontroller. The relays are used to control the flow of high-power current to the appliances.
- **Appliances**: These are the electrical devices in your home that you want to control remotely, such as lights, thermostats, refrigerators, or locks.

Here's how the system works:

- 1. The user interacts with the smartphone app to send a control signal (e.g., turn on a light) to the microcontroller.
- 2. The smartphone transmits the signal wirelessly (likely via Wi-Fi) to the microcontroller.
- 3. The microcontroller receives the signal from the smartphone and interprets it.
- 4. The microcontroller activates the appropriate

- Volume 3, Issue 3, May 2024 relay(s) in the relay module based on the received signal.
- 5. The activated relay(s) control the flow of electricity to the corresponding appliance(s), turning them on or off as instructed.

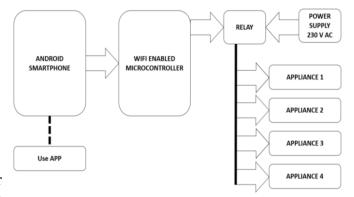


Fig. 1.1: Block Diagram

Output Images:

IV. HARDWARE REQURIMENT

A. 5V 4 channel Relay module

Journal of Engineering Design and Computational Science(JEDCS) The four-channel relay module contains four 5V relays and the associated switching and isolating 9. Open-Source components, which makes interfacing with a microcontroller or sensor easy with minimum components and connections. The contacts on each relay are specified for 250VAC and 30VDC and 10A in each case, as marked on the body of the relays.

B. ESP8266 MICROCONTROLLER

The ESP8266 is a low-cost Wi-Fi microchip with 2. **Project Creation:** Within the Blynk app, the user built-in TCP/IP networking software microcontroller functionality. But initially there was little information in English about the chip and the 3. Hardware Connection: The microcontroller commands it received. The model's very low price and very few external components indicate that its final size could be very cheap; This attracts many hackers to explore the model's module, chip and software and 4. User Interaction: The user interacts with the translate Chinese literature.

C. Blynk App:

Blynk is a popular **low-code IoT application builder**. This means it allows users to create custom interfaces for controlling their connected devices without needing extensive programming knowledge. Blynk offers a drag-and-drop interface with various pre-built widgets:

- 1. Buttons: Turn appliances on/off or trigger actions
- 2. Sliders: Adjust settings like light brightness or thermostat temperature.
- 3. **Graphs:** Visualize sensor data in real-time (e.g., temperature readings).
- 4. **LEDs:** Provide visual feedback on appliance status.
- 5. Key Features of Blynk:
- 6. **Supported Hardware:** Works with a wide range of microcontrollers like Arduino, Raspberry Pi, and development boards from various manufacturers.
- 7. **Simple Setup:** Blynk provides libraries for the supported hardware, simplifying the connection process between the microcontroller and the Blynk app.
- 8. Cross-Platform **Availability:** Blynk dedicated apps for Android and iOS devices, making it accessible to a wide range of

- smartphone users. **Libraries:** The **Blynk** core
- libraries are open-source, allowing developers to customize functionality for specific needs.

Blynk in Action: Controlling Appliances

Here's how Blynk integrates with the home appliance control system:

- 1. Blynk App Installation: The user downloads and installs the Blynk app on their smartphone.
- creates a new project and defines the desired interface using the drag-and-drop widgets.
- (e.g., Arduino) is programmed using Blynk libraries to communicate with the Blynk app and control the relays based on received commands.
- Blynk app interface (buttons, sliders) to send control signals to the microcontroller.
- 5. Command **Execution:** The microcontroller translates the app commands and activates the corresponding ultimately relays, appliances on or off.

V. COMPREHENSIVE OVERVIEW

The Smart Extension Board comprises of a ton of features compared to an traditional extension board which is a device that is remotely controlled, provides isolation of mains supply and extension board appliances, equipment's and devices, it carry out the stabilization process to provide a uninterrupted follow of supply protecting the circuit of the connected devices, also monitors the individual device power consumption and tracks efficiency and wirelessly controlling appliances, equipment's and devices from turning on and turning off.

VI. CONCLUSION

The Smart Extension board is a autonomous extension board which perform tasks which a traditional extension board cannot perform it provide many features which can be innovative and comprises internet of things (IOT) which carry out the monitoring of the individual device power consumption and transmit it to the Bluetooth application or store it to the database and retrieve or fetch when it is necessary. It

Journal of Engineering Design and Computational Science(JEDCS) also performs isolation of the high main supply and the low appliance, equipment and devices in order to protect them from any damage from overloading or natural disturbances like thunder, lighting causing fluctuations in the supply this also ensures the flow of the supply by boosting it or bucking it using a voltage stabilizer to maintain the circuitry without breaking the circuit in any of the mentioned cases. It offers a USB charging port also so one can charge their smartphones with depending on their Adapter configuration

VII. REFERENCES

- [1] Adi Winarno, Budi Prijo Sembodo, & Mahfud Affandi(2022). A Review Paper on Design and Construction of Smart Home automation Internet of Things (Iot) Using Esp8266. Best Journal of Applied Electrical & Science Technology University of PGRI Adi Buana Surabaya, p-ISSN 2715-2871, e-ISSN 2714-5247.
- [2] Rakhi Bhardwaj, Shiv Narain Gupta, Manish Gupta & Priyesh Tiwari(2021). A Review Paper on IoT based Healthware and Healthcare Monitoring System in India. International Journal of Engineering Research & Technology (IJERT).
- [3] Home Automation System Using Esp8266 Microcontroller And Blynk Application(2021). I. Visan, E.M. Diaconu, ISSN 2286-2455.
- [4] Maryam Abdulhakeem Hailan, Baraa Munqith Albaker, Muwafaq Shyaa Alwan (2023). smart factory using NodeMCU with Blynk platform. Vol. 30, No. 1, Indonesian Journal of Electrical Engineering & Computer Science, April 2023.
- [5] R.A. Muditha H Ranasighe, M.G.T. Madusanka and D.W. Wadanambi (2021). Development Of A Web-Based Smart Power Extension Device For Domestic Applications, International Conference on Business Research University of Moratuwa, Sri Lanka December 3, 2021.
- [6] A. Prathik, S. Ahiraj, Y. Harsha, Kevin Prince. IoT based Smart Power Extender with Timer Feature Controlled through a Mobile App, Journal of Information Technology and Digital World (ISSN: 2582-418X).
- [7] Designing an IoT Based Stabilizer for Home Appliances, Hasnain Ahmed, Tanvir Jahan, Tareq Islam Adittya & Sadman Sadique (2021)